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1 Introduction

In this note to Chapter 7, we consider the risk neutral price for various exotic

options:

(i) Knock out Barrier option:

VT = (ST −K)+1{max[0,T ] St≤b}.

(ii) Lookback option:

VT = max
[0,T ]

St − S(T ).

(iii) Asian option:

VT =
( 1

T

∫ T

0

Stdt−K
)+

The risk-neutral price V (t) in all of these cases can be expressed as

V (t) = EQ
[
e−r(T−t)VT |F(t)

]
.

It is tempting to write V (t) = v(t, S(t)) for some function v(t, x) and start deriving

what equation v(t, x) has to satisfy. However, this is incorrect.

Recall that the basis for us to say there exists such a function v(t, x) is because of

the Indepndence lemma, which in turns rely on the fact that we can write

ST = St × ( something independent of F(t))

and we were working with European option, which only depends on ST .
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That is not the case here: all these three exotic options are path dependent, i.e. the

expression for VT involves the values of St, 0 ≤ t ≤ T , not just ST . So apriori, it is

not clear that we can find such a v(t, x). Indeed, for the Lookback and Asian

option, we will see that the correct function to deal with is v(t, x, y), not v(t, x),

where we need to add another component Y (t) to S(t) so that the joint process

S(t), Y (t) have the necessary Markov property.

In this section, we will go over how to find the PDE for the Knockout Barrier option.

2 Knock-out Barrier option

Reading material: Ocone’s Lecture 4 note part 2, Shreve’s Section 7.3.2

Let S(t) satisfies

dSt = rStdt+ σStdWt.

Consider the Knock-out Barrier option with barrier b and strike price K:

VT = (ST −K)+1{max[0,T ] St≤b}.

Note: Necessarily we require K < b and S(0) < b so that P(VT > 0) > 0.

The risk neutral price V (t) can be written as:

V (t) = E
[
e−r(T−t)(ST −K)+1{max[0,T ] St≤b}|F(t)

]
.

We proceed through several steps.

(i) Write 1{max[0,T ] St≤b} in terms of Su, 0 ≤ u ≤ t and Su, t ≤ u ≤ T .

The reason is we want to apply the Independence Lemma (or quote the Markov

property of S(t)) property of S(t), so heuristically we want to “separate the past

and the future”. We already know how to do this with ST . So we apply the same

principle to the new term 1{max[0,T ] St≤b}.

This is accomplished as followed:

1{max[0,T ] St≤b} = 1{max[0,t] Su≤b}1{max[t,T ] Su≤b}.

It is easy to see why the equality is true: the maximum of the whole path does not

exceed b if and only if its maximum on each time interval does not exceed b.

(ii) Recognizing that 1{max[0,t] Su≤b} ∈ F(t), so it can be factored out of E(.|F(t)).
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(iii) Define

τb := inf{t ≥ 0 : S(t) > b} ∧ T
Tb := inf{t ≥ 0 : S(t) = b} ∧ T

Recall that P (Tb = τb) = 1. And so with probability 1:

{max
[0,t]

Su ≤ b} = {τb ≥ t} = {Tb ≥ t}.

The change from τb to Tb might seem unimportant and non-intuitive. But it is to

apply the optinal stopping theorem for martingale, see Step (viii).

(iv) Combine (ii) and (iii) we get

V (t) = 1Tb≥tE
[
e−r(T−t)(ST −K)+1{max[t,T ] Su≤b}|F(t)

]
.

(v) Since

S(T ) = S(t)e(r−
1
2
σ2)(T−t)+σ(W (T )−W (t))

and

max
[t,T ]

Su = St max
[t,T ]

e(r−
1
2
σ2)(u−t)+σ(W (u)−W (t)),

note that max[t,T ] e
(r− 1

2
σ2)(u−t)+σ(W (u)−W (t)) is independent of F(t), by the

Independence Lemma, we get

E
[
e−r(T−t)(ST −K)+1{max[t,T ] Su≤b}|F(t)

]
= v(t, S(t)).

where

v(t, x) := E
[
e−r(T−t)

(
xe(r−

1
2
σ2)(T−t)+σ(W (T )−W (t)) −K

)+
1
{xmax[t,T ] e

(r− 1
2σ

2)(u−t)+σ(W (u)−W (t))≤b}

]
.

(vi) (Crucial point)

V (t) = 1Tb≥tv(t, S(t)) = v(t, S(t ∧ Tb)).

Indeed if Tb ≥ t then LHS = v(t, S(t)) and t ∧ Tb = t so the RHS = v(t, S(t)) and

the equality is true.

If Tb < t then LHS = 0. t ∧ Tb = Tb so that S(t ∧ Tb) = b. Moreover, with

probability 1:

bmax
[t,T ]

er(u−t)+σ(W (u)−W (t)) > b
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Indeed, if we denote X(u) := r(u− t) + σ(W (u)−W (t)), u ∈ [t, T ] then X(t) = 0

and by property of Brownian motion,

P (X(u) ≤ 0,∀u ∈ [t, T ]) = 0.

So there must exist u ∈ (t, T ], X(u) > 0 and at that point u, beX(u) > b. Thus

v(t, S(t ∧ Tb)) = v(t, b) =
[
e−r(T−t)

(
be(r−

1
2
σ2)(T−t)+σ(W (T )−W (t)) −K

)+
1
{bmax[t,T ] e

(r− 1
2σ

2)(u−t)+σ(W (u)−W (t))≤b}

]
= 0,

and so the RHS = 0 as well.

(vii) Another important observation: From the above, we see that the function

v(t, x) satisfies v(t, b) = 0 for all t. Therefore, it follows that

v(τ, b) = 0,

for all stopping time τ taking values in [0, T ]. From which we derive that

v(t ∧ Tb, St∧Tb) = v(t, St∧Tb)

and

e−r(t∧Tb)v(t ∧ Tb, St∧Tb) = e−rtv(t, St∧Tb).

Indeed, for t < Tb the equalities are clear. For t > Tb, then

v(Tb, STb) = v(Tb, b) = 0 = v(t, b) so the equalities are also true in this case.

This is important because we will apply Ito’s formula to e−r(t∧Tb)v(t ∧ Tb, St∧Tb), not

to e−rtv(t, St∧Tb). In other words, we want to apply Ito’s formula to e−rtv(t, St) up

to the stopping time Tb only, with the knowledge that e−rtv(t, St∧Tb) = e−rtVt is a

martingale.

Another way to argue is this. We want to apply Ito’s formula to

e−r(t∧Tb)v(t ∧ Tb, St∧Tb) so we would want to know that it is a martingale. However,

as said above, we only know e−rtv(t, St∧Tb) = e−rtVt is a martingale. However,

applying the fact that a stopped martingale is a martingale, we can also see that

indeed e−r(t∧Tb)v(t ∧ Tb, St∧Tb) is a martingale and our derivation of the PDE below

by setting the dt term to 0 is correct.
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I believe (constrasting to professor Ocone’s note) that we cannot show

e−r(t∧Tb)v(t ∧ Tb, St∧Tb) is a martingale directly by showing say Vt = v(t ∧ Tb, St∧Tb).

The reason is for t > Tb, it is clear that Vt = 0. But we do not have a direct

interpretation of v(Tb, B) via conditional expectation (see part v for example). So we

can only show Vt = v(t, St∧Tb) and then stop e−rtv(t, St∧Tb) with Tb to achieve a

martingale.

(viii) Domain of the PDE:

Since 0 < S(t ∧ Tb) ≤ b,∀t ∈ [0, T ], we can apply Ito’s formula to

e−r(t∧Tb)v(t ∧ Tb, St∧Tb) under the assumption that v(t, x) ∈ C1,2 in the region

[0, T )Tbimes(0, b]. Thus the domain for our PDE is [0, T ]Tbimes[0, b], which is

different from the domain we used to work on for European call option:

[0, T ]× [0,∞). One of the effect is that we will have boundary conditions for our

PDE at x = 0 and x = b.

(ix) Derivation of the PDE:

We have

S(t ∧ Tb) = S(0) +

∫ t∧Tb

0

rS(u)du+

∫ t∧Tb

0

σS(u)dW (u)

= S(0) +

∫ t

0

1[0,Tb)rS(u)du+

∫ t

0

1[0,Tb)σS(u)dW (u).

Apply Ito’s formula to e−r(t∧Tb)v(t ∧ Tb, St∧Tb) gives

e−rtv(t, S(t ∧ Tb) = v(0, S0) +

∫ t∧Tb

0

e−ru
[
− rv + vt + rS(t)vx +

1

2
σ2S2(u)vxx

]
du

+

∫ t∧Tb

0

e−ruσS(u)vxdWu,

where for all functions v we understood as v(t, St), similarly for vt, vx, vxx.

Note that this is where the importance of using Tb instead of τb is. The stochastic

integral ∫ t

0

e−ru1[0,Tb)σS(u)vxdWu =

∫ t∧Tb

0

e−ruσS(u)vxdWu

is a martingale since Tb is a stopping time. If we use τb here we cannot make the

same conclusion for technical reason.
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Setting the ‘dt′ term to 0 gives

vt − rv + rxvx +
1

2
x2σ2vxx = 0, 0 ≤ t < T, 0 < x < b.

Moreover, note that v(t, 0) = 0 since if S(t) ever hits 0 it will stay there. v(t, B) = 0

was explaind in step (vi). These are the boundary conditions for v. We also have

the terminal condition v(T, x) = (x−K)+ as usual.

Thus, the PDE that v must satisfy is:

vt − rv + rxvx +
1

2
x2σ2vxx = 0, 0 ≤ t < T, 0 < x < b

v(t, 0) = v(t, b) = 0

v(T, x) = (x−K)+.
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