PDE for Knockout Barrier option

Math 622

March 3, 2014

1 Introduction

In this note to Chapter 7, we consider the risk neutral price for various exotic options:
(i) Knock out Barrier option:

$$
V_{T}=\left(S_{T}-K\right)^{+} \mathbf{1}_{\left\{\max _{[0, T]} S_{t} \leq b\right\}} .
$$

(ii) Lookback option:

$$
V_{T}=\max _{[0, T]} S_{t}-S(T)
$$

(iii) Asian option:

$$
V_{T}=\left(\frac{1}{T} \int_{0}^{T} S_{t} d t-K\right)^{+}
$$

The risk-neutral price $V(t)$ in all of these cases can be expressed as

$$
V(t)=\mathbb{E}^{\mathbb{Q}}\left[e^{-r(T-t)} V_{T} \mid \mathcal{F}(t)\right]
$$

It is tempting to write $V(t)=v(t, S(t))$ for some function $v(t, x)$ and start deriving what equation $v(t, x)$ has to satisfy. However, this is incorrect.
Recall that the basis for us to say there exists such a function $v(t, x)$ is because of the Indepndence lemma, which in turns rely on the fact that we can write

$$
S_{T}=S_{t} \times(\text { something independent of } \mathcal{F}(t))
$$

and we were working with European option, which only depends on S_{T}.

That is not the case here: all these three exotic options are path dependent, i.e. the expression for V_{T} involves the values of $S_{t}, 0 \leq t \leq T$, not just S_{T}. So apriori, it is not clear that we can find such a $v(t, x)$. Indeed, for the Lookback and Asian option, we will see that the correct function to deal with is $v(t, x, y)$, not $v(t, x)$, where we need to add another component $Y(t)$ to $S(t)$ so that the joint process $S(t), Y(t)$ have the necessary Markov property.
In this section, we will go over how to find the PDE for the Knockout Barrier option.

2 Knock-out Barrier option

Reading material: Ocone's Lecture 4 note part 2, Shreve's Section 7.3.2
Let $S(t)$ satisfies

$$
d S_{t}=r S_{t} d t+\sigma S_{t} d W_{t}
$$

Consider the Knock-out Barrier option with barrier b and strike price K :

$$
V_{T}=\left(S_{T}-K\right)^{+} \mathbf{1}_{\left\{\max _{[0, T]} S_{t} \leq b\right\}} .
$$

Note: Necessarily we require $K<b$ and $S(0)<b$ so that $\mathbb{P}\left(V_{T}>0\right)>0$. The risk neutral price $V(t)$ can be written as:

$$
V(t)=E\left[e^{-r(T-t)}\left(S_{T}-K\right)^{+} \mathbf{1}_{\left\{\max _{[0, T]} S_{t} \leq b\right\}} \mid \mathcal{F}(t)\right] .
$$

We proceed through several steps.
(i) Write $\mathbf{1}_{\left\{\max _{[0, T]} S_{t} \leq b\right\}}$ in terms of $S_{u}, 0 \leq u \leq t$ and $S_{u}, t \leq u \leq T$.

The reason is we want to apply the Independence Lemma (or quote the Markov property of $S(t)$) property of $S(t)$, so heuristically we want to "separate the past and the future". We already know how to do this with S_{T}. So we apply the same principle to the new term $\mathbf{1}_{\left\{\max _{[0, T]} S_{t} \leq b\right\}}$.
This is accomplished as followed:

$$
\mathbf{1}_{\left\{\max _{[0, T]} S_{t} \leq b\right\}}=\mathbf{1}_{\left\{\max _{[0, t]} S_{u} \leq b\right\}} \mathbf{1}_{\left\{\max _{[t, T]} S_{u} \leq b\right\}} .
$$

It is easy to see why the equality is true: the maximum of the whole path does not exceed b if and only if its maximum on each time interval does not exceed b.
(ii) Recognizing that $\mathbf{1}_{\left\{\max _{[0, t]} S_{u} \leq b\right\}} \in \mathcal{F}(t)$, so it can be factored out of $E(. \mid \mathcal{F}(t))$.
(iii) Define

$$
\begin{aligned}
\tau_{b} & :=\inf \{t \geq 0: S(t)>b\} \wedge T \\
T_{b} & :=\inf \{t \geq 0: S(t)=b\} \wedge T
\end{aligned}
$$

Recall that $P\left(T_{b}=\tau_{b}\right)=1$. And so with probability 1 :

$$
\left\{\max _{[0, t]} S_{u} \leq b\right\}=\left\{\tau_{b} \geq t\right\}=\left\{T_{b} \geq t\right\}
$$

The change from τ_{b} to T_{b} might seem unimportant and non-intuitive. But it is to apply the optinal stopping theorem for martingale, see Step (viii).
(iv) Combine (ii) and (iii) we get

$$
V(t)=\mathbf{1}_{T_{b} \geq t} E\left[e^{-r(T-t)}\left(S_{T}-K\right)^{+} \mathbf{1}_{\left\{\max _{[t, T]} S_{u} \leq b\right\}} \mid \mathcal{F}(t)\right]
$$

(v) Since

$$
S(T)=S(t) e^{\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma(W(T)-W(t))}
$$

and

$$
\max _{[t, T]} S_{u}=S_{t} \max _{[t, T]} e^{\left(r-\frac{1}{2} \sigma^{2}\right)(u-t)+\sigma(W(u)-W(t))},
$$

note that $\max _{[t, T]} e^{\left(r-\frac{1}{2} \sigma^{2}\right)(u-t)+\sigma(W(u)-W(t))}$ is independent of $\mathcal{F}(t)$, by the Independence Lemma, we get

$$
E\left[e^{-r(T-t)}\left(S_{T}-K\right)^{+} \mathbf{1}_{\left\{\max _{[t, T]} S_{u} \leq b\right\}} \mid \mathcal{F}(t)\right]=v(t, S(t)) .
$$

where
$v(t, x):=E\left[e^{-r(T-t)}\left(x e^{\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma(W(T)-W(t))}-K\right)^{+} \mathbf{1}_{\left\{x \max _{[t, T]} e^{\left(r-\frac{1}{2} \sigma^{2}\right)(u-t)+\sigma(W(u)-W(t))} \leq b\right\}}\right]$.
(vi) (Crucial point)

$$
V(t)=\mathbf{1}_{T_{b} \geq t} v(t, S(t))=v\left(t, S\left(t \wedge T_{b}\right)\right)
$$

Indeed if $T_{b} \geq t$ then LHS $=v(t, S(t))$ and $t \wedge T_{b}=t$ so the RHS $=v(t, S(t))$ and the equality is true.
If $T_{b}<t$ then LHS $=0 . t \wedge T_{b}=T_{b}$ so that $S\left(t \wedge T_{b}\right)=b$. Moreover, with probability 1 :

$$
b \max _{[t, T]} e^{r(u-t)+\sigma(W(u)-W(t))}>b
$$

Indeed, if we denote $X(u):=r(u-t)+\sigma(W(u)-W(t)), u \in[t, T]$ then $X(t)=0$ and by property of Brownian motion,

$$
P(X(u) \leq 0, \forall u \in[t, T])=0 .
$$

So there must exist $u \in(t, T], X(u)>0$ and at that point $u, b e^{X(u)}>b$. Thus

$$
\begin{aligned}
v\left(t, S\left(t \wedge T_{b}\right)\right)=v(t, b)= & {\left[e^{-r(T-t)}\left(b e^{\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma(W(T)-W(t))}-K\right)^{+}\right.} \\
& \left.\mathbf{1}_{\left\{b \max _{[t, T]} e^{\left(r-\frac{1}{2} \sigma^{2}\right)(u-t)+\sigma(W(u)-W(t))} \leq b\right\}}\right]=0,
\end{aligned}
$$

and so the RHS $=0$ as well.
(vii) Another important observation: From the above, we see that the function $v(t, x)$ satisfies $v(t, b)=0$ for all t. Therefore, it follows that

$$
v(\tau, b)=0,
$$

for all stopping time τ taking values in $[0, T]$. From which we derive that

$$
v\left(t \wedge T_{b}, S_{t \wedge T_{b}}\right)=v\left(t, S_{t \wedge T_{b}}\right)
$$

and

$$
e^{-r\left(t \wedge T_{b}\right)} v\left(t \wedge T_{b}, S_{t \wedge T_{b}}\right)=e^{-r t} v\left(t, S_{t \wedge T_{b}}\right) .
$$

Indeed, for $t<T_{b}$ the equalities are clear. For $t>T_{b}$, then $v\left(T_{b}, S_{T_{b}}\right)=v\left(T_{b}, b\right)=0=v(t, b)$ so the equalities are also true in this case.

This is important because we will apply Ito's formula to $e^{-r\left(t \wedge T_{b}\right)} v\left(t \wedge T_{b}, S_{t \wedge T_{b}}\right)$, not to $e^{-r t} v\left(t, S_{t \wedge T_{b}}\right)$. In other words, we want to apply Ito's formula to $e^{-r t} v\left(t, S_{t}\right)$ up to the stopping time T_{b} only, with the knowledge that $e^{-r t} v\left(t, S_{t \wedge T_{b}}\right)=e^{-r t} V_{t}$ is a martingale.

Another way to argue is this. We want to apply Ito's formula to $e^{-r\left(t \wedge T_{b}\right)} v\left(t \wedge T_{b}, S_{t \wedge T_{b}}\right)$ so we would want to know that it is a martingale. However, as said above, we only know $e^{-r t} v\left(t, S_{t \wedge T_{b}}\right)=e^{-r t} V_{t}$ is a martingale. However, applying the fact that a stopped martingale is a martingale, we can also see that indeed $e^{-r\left(t \wedge T_{b}\right)} v\left(t \wedge T_{b}, S_{t \wedge T_{b}}\right)$ is a martingale and our derivation of the PDE below by setting the dt term to 0 is correct.

I believe (constrasting to professor Ocone's note) that we cannot show $e^{-r\left(t \wedge T_{b}\right)} v\left(t \wedge T_{b}, S_{t \wedge T_{b}}\right)$ is a martingale directly by showing say $V_{t}=v\left(t \wedge T_{b}, S_{t \wedge T_{b}}\right)$. The reason is for $t>T_{b}$, it is clear that $V_{t}=0$. But we do not have a direct interpretation of $v\left(T_{b}, B\right)$ via conditional expectation (see part v for example). So we can only show $V_{t}=v\left(t, S_{t \wedge T_{b}}\right)$ and then stop $e^{-r t} v\left(t, S_{t \wedge T_{b}}\right)$ with T_{b} to achieve a martingale.
(viii) Domain of the PDE:

Since $0<S\left(t \wedge T_{b}\right) \leq b, \forall t \in[0, T]$, we can apply Ito's formula to $e^{-r\left(t \wedge T_{b}\right)} v\left(t \wedge T_{b}, S_{t \wedge T_{b}}\right)$ under the assumption that $v(t, x) \in C^{1,2}$ in the region $[0, T) T_{b}$ imes $(0, b]$. Thus the domain for our PDE is $[0, T] T_{b}$ imes $[0, b]$, which is different from the domain we used to work on for European call option:
$[0, T] \times[0, \infty)$. One of the effect is that we will have boundary conditions for our PDE at $x=0$ and $x=b$.
(ix) Derivation of the PDE:

We have

$$
\begin{aligned}
S\left(t \wedge T_{b}\right) & =S(0)+\int_{0}^{t \wedge T_{b}} r S(u) d u+\int_{0}^{t \wedge T_{b}} \sigma S(u) d W(u) \\
& =S(0)+\int_{0}^{t} \mathbf{1}_{\left[0, T_{b}\right)} r S(u) d u+\int_{0}^{t} \mathbf{1}_{\left[0, T_{b}\right)} \sigma S(u) d W(u) .
\end{aligned}
$$

Apply Ito's formula to $e^{-r\left(t \wedge T_{b}\right)} v\left(t \wedge T_{b}, S_{t \wedge T_{b}}\right)$ gives

$$
\begin{aligned}
e^{-r t} v\left(t, S\left(t \wedge T_{b}\right)=\right. & v\left(0, S_{0}\right)+\int_{0}^{t \wedge T_{b}} e^{-r u}\left[-r v+v_{t}+r S(t) v_{x}+\frac{1}{2} \sigma^{2} S^{2}(u) v_{x x}\right] d u \\
& +\int_{0}^{t \wedge T_{b}} e^{-r u} \sigma S(u) v_{x} d W_{u}
\end{aligned}
$$

where for all functions v we understood as $v\left(t, S_{t}\right)$, similarly for $v_{t}, v_{x}, v_{x x}$. Note that this is where the importance of using T_{b} instead of τ_{b} is. The stochastic integral

$$
\int_{0}^{t} e^{-r u} \mathbf{1}_{\left[0, T_{b}\right)} \sigma S(u) v_{x} d W_{u}=\int_{0}^{t \wedge T_{b}} e^{-r u} \sigma S(u) v_{x} d W_{u}
$$

is a martingale since T_{b} is a stopping time. If we use τ_{b} here we cannot make the same conclusion for technical reason.

Setting the ' $d t$ ' term to 0 gives

$$
v_{t}-r v+r x v_{x}+\frac{1}{2} x^{2} \sigma^{2} v_{x x}=0,0 \leq t<T, 0<x<b
$$

Moreover, note that $v(t, 0)=0$ since if $S(t)$ ever hits 0 it will stay there. $v(t, B)=0$ was explaind in step (vi). These are the boundary conditions for v. We also have the terminal condition $v(T, x)=(x-K)^{+}$as usual.
Thus, the PDE that v must satisfy is:

$$
\begin{aligned}
v_{t}-r v+r x v_{x}+\frac{1}{2} x^{2} \sigma^{2} v_{x x} & =0,0 \leq t<T, 0<x<b \\
v(t, 0)=v(t, b) & =0 \\
v(T, x) & =(x-K)^{+} .
\end{aligned}
$$

